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A typical feature of structures made of composite materials is presence in them of 
residual stress and strain fields which form as a result of the manufacturing production 
process and which affect the strength of a finished product and deviation of its shape from 
that initially prescribed. The problem of forming these fields in layered reinforced cylin- 
drical bodies prepared by the winding method have recently been studied in detail (see [i]). 
There has been much less solution of the problem for structures which differ from cylindrical 
[2]. In the existing works residual stresses in a composite material are determined at 
the microlevel and formation of residual stresses in the reinforcement and binder (structural 
stresses) are not considered. In addition, experiments on simple unidirectionally reinforced 
specimens [3] show that these stresses, which are caused in particular by thermal and chemi- 
cal shrinkage of the binder, may reach considerable values with complete absence of micro- 
stresses. A method is suggested in this work for findin~ the residual stress-strained 
state (also including structural stresses) in reinforced axisymmetrical shells prepared 
by winding or forming. 

I. The process of preparing shells is presented as a sequence of five stages [4]; 
formation of a semifinished shell by lay-up (winding) of unidirectionally reinforced layers 
on a mandrel, heatimg the semifinished product together with the mandrel to the binder poly- 
merization temperature and its formation of an external force effect, polymerization of 
the binder, cooling the finished shell on the mandrel, and removing the mandrel. 

We make the following assumptions: I) as a result of the viscosity of unhardened binder 
structural stresses which form in the composite towards the instant of a changeover of the 
binder to an elastic phase are entirely relaxed; therefore in the first two stages we consider 
the binder as an ideal fluid, and in the rest of'the stages as an isotropic solid for which 
the Duhamel-Neumann law is valid; this law is valid for the reinforcing material in all 
stages; 2) polymerization is an instantaneous change in the properties of the binder from 
the liquid to the solid phase; 3) in view the thin wall of the shell the temperature field 
during the whole process is uniform through the thickness and the change in stresses in 
the reinforcing skeleton caused by filtration of binder and movement of the polymerization 
front may be ignored [5]; 4) the reinforcement and hardened binder are in a plane stressed 
state and are ideally fastened to each other. 

With these assumptions the production process may be conditionally broken down into 
two stages in relation to the aggregate condition of the binder: the first includes the 
first two stages of the process and the~second includes the final three stages. We intro- 
duce into planes of a unidirectionally reinforced layer orthogonal axes (i, 2) connecting 
the first axis with the reinforcement direction. By using a fibered model as a basis of 
assumption i, we obtain equations of state for the unidirectional composite with unhardened 
binder in the form 

hol(h) = ~ 'E ' (Ael (h) - -  a ' A t ~ ) ,  h(~2(~i - -  A(h2(k) = 0 (k = t ,  2), ( 1 . 1 )  

and stresses in the reinforcement are connected with increments of macrostresses by the 
relationship 

i r ! ! , 

c%(h) = (h(h-~) + A(h(k)/~, ~2(~) = ~2(~) = 0. (i. 2 ) 

Here and subsequently AO1(k) = O1(k ) - Of(k-l); Ael(k ) = el(k) - el(k-l); oi(0) = oo; 
f 

0=(0) = 012(0 ) = 0; el(o) = E2(o) = 0; 01 (0) = ~ ~ = ~ = 0; ~t k = t k -- 

tk-~; to = t~;-~ L Is stage number; 0~, 02, 0~2, e~ are average microstresses and macro- 

strains in the composite; a prime indicates corresponding average values relating to the 
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reinforcement; E', 9', ~' are Young's modulus, Poisson's ratio, and thermal expansion; $' 
is degree of reinforcement; o 0 is prescribed initial stress in the layer during lay-up of 
the semifinished product (e.g., due to tension with power winding); t k is temperature of the 
semifinished product at the end of the k-th stage. 

By using an approach in [6] suggested for a composite with a hardened binder and consid- 
ering additional shrinkage and thermal deformation, and also prior stressing in structural 
elements, we find equations of state for a unidirectional composite in the steps of the 
second stage (k = 3, 4, 5): 

A{ ol~(h~] - -  [g~ ] ( A { ~ i k ~ ) - -  {o~l~(k~} A% - -  {~,~(h~}~8o), ( 1 . 3 )  " 

and structural stresses are connected with increments of macrostresses by the relationships 
! tp H ! ~ o 

~2(k) = ~2(~) = ~ + A~2(k), ~i~(~) = ff12(k) ----- ~12(k-i) + Aff12(k), 
, r rr " (~l(k) = (~1(k--1) ~- (E'Agl(h) + ~r'tAg2(~))/E, + ~ g(k), (1 4) 
g i t  ~ f r 

(~l(k) = Hl(k--X) ~- (E"Aff l(k)  - -  ~ XAff2(k))/E1 - -  ~ if(h), 

g(k) = E 'Er' [(~" --  =') Atn + 63he0]. 
Here A{o12(k)} ,  . . . .  {Xz2(k)} a r e  m a t r i x  columns ( i n d e x  k i s  o m i t t e d ) :  

{~1~} = {~, ~,  0F, {h~} = {~, ~, oF; 

[gk] i s  a 3 • 3 s y m m e t r i c a l  m a t r i x  whose e l e m e n t s  have  t h e  form 

J~) vE~, .(~) vE1vr2, J~) vE~ (k 3, 4, 5), ~n = ~2 ~ = = (1.5) 
g(~ -(~ 0, -(~) (1 vr, v2y", E~ ~rE' ~"E r', 13 = S 2 3  = g33 ---- G12, %~ == -- = -{- 

E 2 = E~E'E" [E I (~'E' + ~"E") -- ~'~"X ~]-I v~ = ~%' + ~"v", 

GI~ = G'G" (~'G" + ~"G') -~, % = v'E' -- v"E', al = (~'E'~' + ~r'E"a")/E~, 

values labelled with two primes relate to the binder; G is shear modulus; e0 is shrinkage 
strain for the binder in the solid phase; 6sk is Kronecker symbol. 

By using (1.2) and (1.5) we write the equations of state for a unidirectional composite 
the same for both stages in axes (s, 8) turned in the plane of the layer with respect to 
axis (i, 2) by arbitrary angle ~: 

A{O~o(~.) } = [B k ] A{es0(k)} --  {o~s0(m }Ark -- {)~so(~)}~a~eo, ( I .  6 ) 
([B~], {~0(~)}, {~0(~>}) = [r~][g~]([Tl]% {au(~}, {~1~)})' 

where [Tz] i s  m a t r i x  f o r  t r a n s f o r m a t i o n  o f  s t r e s s  t e n s o r  components  w i t h  r o t a t i o n  [7 ] .  In  
( 1 . 6 )  e l e m e n t s  o f  m a t r i c e s  [ g k ] ,  { a l ~ ( k ) } ,  { )k~(k)}  a r e  d e t e r m i n e d  f o r  t h e  f i r s t  s t a g e  (k = 
1 ,2 )  by t h e  r e l a t i o n s h i p  

g~ )  , , ,,(a) _(a) ,,(a) _(h) , ( 1 . 7 )  = ~ E , 8 1 2  = g22 = 823 = Ig33 = 0 ,  0~l(h) = 0~ , 

a2(~) = 0, ~i(~) = %2(~) = 0, 

and for the second (k = 3, 4, 5) by relationships (1.6). It is noted that from (1.3) and the 
transformation equation with rotation A{ez2(k)} = [Tz]TA{gsS(k)} the equality 

A{~ = [g~ ]([r~]zA{e~)(a)} --{an(~)}at~ -- {Xnr ' ( 1 . 8 )  

follows which together with (1.2) or (I.4) establishes the dependence between structural 
stresses and increments of macrostrains for the composite in all stages of the process. 

2. We consider a shell of rotation formed by a layer of pairs of unidirectionally 
reinforced layers symmetrical with respect to te central surface. Layers of one of the 
pairs are identical, and the reinforcement trajectory comprise angles -+~m (m = I, ..., n, 
n is number of pairs of layers) with the direction of the meridian of the central surface. 
In order to describe the stress-strained state of the shell during the manufacturing process 
we assume that: i) for all of the bundle of layers the Kirchhoff-Love hypotheses are valid; 
2) equations of state for elementary layers have the form (1.6); 3) the shell is in an axi- 
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symmetrical moment-free state and in contact with the mandrel and forminK device without 
friction. Compliance of the mandrel compared with compliance of the semifinished product 
is ignored. The equations of shell theory [8] for the k-th stage are written as 

rdT~c~)/ds + (Ts(m -- To(m)dr/ds = 0, ( 2 . 1 )  
T,(~IRx -5 To(h)/R2 = Ph, P~ = Ph + -5 Ph-, 

Ts(h) Ts(~_,) + C~)Aes(h) + ~x2 o~o(~ ) ,  u,3 =~h - -  u,4 u3~%, 

To(k) = Te(~-,) + C~)Ae,(~} + C~)A%(k) --  u2a~(~}~'~h - -  C2~(h) 8skeo, 
As,(a) = d(Aua)/ds + Awa/Ra, rAeo(~ = Auadr/ds + w a sin ~, 

Ae, e ( a ) = O ,  u h = u ~ _ z - s A u k ,  w a = w a _ ~ - s A w h ,  u o = w  o = 0 .  

Here  (T,(o), To(o)) = 4 ~ (as(o), ao(o))m hm; 
m = l  

(~ = i ,  2); 

Ts(k), T0(k) , Uk, w k are forces and displacements in the shell at the end of the k-th stage; 
r, RI, R2 are radius of rotation and principal curvatures of the central surface; s is meri- 
dian arc length; ~ is angle between the normal to the central surface and the axis of rota- 
tion; pk • are normal components of loads operating on the outer (+) and inner (-) surfaces 
of the shell in the k-th stage; h m is thickness of the unidirectional layer in the m-th pair 
of the bundle of layers. 

At high edges of the shell s = 0, s = sz it is necessary to prescribe for one value 
from each of values 

(r'{k)(0)' uk~))' (T'(a)@*)' ua~l))" ( 2 . 2 )  

In addition, the stiffness condition for the mandrel superimposes a limitation on deflection: 

wh~0 or w~0. (2.3) 

The first limitation occurs when the mandrel is placed from the direction of the inner sur- 
face of the shell, and the second when it is from the direction of the outer surface. In 
the first case pk+(S) is external forming pressure, and Pk=(S) is reaction to the 
mandrel, and in the second case functions pk+(S), pk-(S) change meaning. It is also noted 
that from the contact conditions pk + ~ 0, Pk- ~ 0 and equality Pk = Pk + + Pk- it follows 
that 

Ph+<<.Pk, Pk->/Ph. (2.4) 

Relationships (2.1)-(2.3) with k = i, ..., 4 and (2.1), (2,2) with k = 5 form a recur- 
rent sequence of boundary problems for determining in each of the stages functions Ts(k) , 
Ts(k), Aes(k), AeS(k), Uk, Wk, and with k = 1 .... , 4 the resultant external pressure on the 
shell pk(s) is also the function sought, but with k = 5 (mandrel removed) ps(s) = 0. This 
sequence of problems for the stress-strained state of a shell in the concluding stages of 
the production process found as a result of the solution will be the residual state sought 
in the finished shell. Corresponding structural residual stresses are found from (1.4) 
and (1.8) taking account of (1.5). 

In view of linearity of the problem in question this sequence may be reduced to solu- 
tion of two boundary probl~m~ relating to two stages of the process. In each stage as a 
power load there is the load in the last step of the stages, and as increments there are 
the differences in corresponding functions at the start and end of the stages. 

We carry out solution of these problems. In the first stage we take k = 2 and At 2 = 

t 2  - t o ,  ~ % ( 2 )  = ~ s ( 2 )  - E s ( o )  = ~ s ( 2 ) ,  A E O ( 2 )  = ~ 0 ( 2 )  -- ~ O ( o )  = ~ O ( o ) ,  Au2 = u2  -- Uo ~ =  u 2 ,  
Aw z = w 2 -- w 0 = w 2. For definiteness we consider the case when in the forming stages the 

semifinished product is entirely butted against the mandrel, i.e., condition (2.3) has the 
form ~ 

w~ = O. (2.5) 
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Then by excluding in (2.1) forces and strain increments, and considering (2.5), we obtain 

ald2u2/ds 2 -t- a f l u / d s  -4- a=u 2 = a4; ( 2 . 6 )  

Po- = b l d u J d s  -I- b2u2 -Jr- b~, ( 2 . 7 )  

where functions at(s) , ..., bs(s ) are expressed in terms of r(s), Cij(2), Ci3(2), el+(2) , 

Ts(0), Ts(0) (i, j = i, 2) and their derivatives with conditions (1.7). The general solution 

of Eq. (2.6) written as u= = clf1(s) + c2f2(s ) + fa(s) (f1(s), f=(s) is linearly independent 

partial solutions of the homogeneous equation, fa(s) is partial solution of Eq. (2.6)). 
Constants c I and c= are determined from boundary conditions (2.2) in which in prescribing 
conditions at the edges of the shell it should be assumed that 

C (o-),,t. T~(o-) = C~? d u d d s  + C(~i)uo- dr lds  + Y+(o) - -  ~3 ~+o-. 

For displacement u 2 from (2.1) we find Es(2) , aO(2) , Ts(2) , TI(2) and subsequently from 
(1.2) and (1.8) we find stresses in the reinforcSmSnt {o12(2) } at the end of the first 
stage. 

It is noted that if formation of a shell is carried out by uniform pressure p2 + = const, 
then from the first inequality (2.4) considering (2.7) we have a limitation on P2 + which 
when fulfilled provides a condition of close butting of the semifinished product to the 
mandrel (2.5) in the formation process: 

p + ~ p + = m i n  po-(s). 
o~=~= I (2.8) 

Similarly with formation pressure P2- 

p~- ~ p .  = m a x  P2 (s). 
O~S~s  1 

In the second stage we assume that k = 5 and At s = t 5 - t2, Ps = 0, Aas(5) = as(s) - 

as(2)' AES(5) = ~I!~I -- a8(2 )' Aus = us -- u2' Aws = ws -- w 2 = w s. By using these dependences 
in solving Eqs. xj we find the stress-strained state of the shell after the end of the 
production process : 

Ts(5) = c3(r sin q))-l, To(s) = --ca(BlsinOq)) -1, 

ATe(5 ) = T~(a) -- Ts(o-), AT0(s) = To(5) -- To(+.), (2.9) 

As+(~) = a n A T s ( 5  ) -I- anTo(5~ + a13At~ -t- a1~%, 

Aeo(5) = a12AT+(a) "-[- a2o-ATo(~) "-t- ao-3At5 "It ao-~%, 

+1 u+ = u z + s in  Go % +  (RiAe=(+) - -  R+A+o(+) ) d , 

- -  (P0 

= C(~)D -~ - -  = f ' ( 5 )n -1  ---- -- C~ )D-I, a22 II ,' u% Bo-A8o(~) - -  Au~ c tg  % a l l  ~.22 +-. , a~2 

'~(~)"(~) ( C  (~)~o- - "(~) "(~) (i t ,  2, i 3, 4) n = r ~ ' 2 2  - -  k 12  ] ~ aij ~ ~ t l i ( - ' l j  *~- a I i D 2 J  = = 

(c a and c~ are integration constants determined from boundary conditions (2.2)). By substi- 
tuting values A{as8(s)} from (2.9) in (1.8) and (1.4), we obtain residual structural stresses 

I I  I " {012(+)}m, {oi2(s }m (m = 1 .. n) in layers of the finished shell. 

-+ 
u5, %o5~10 +m 
~o- + I k], ~J, +J 
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3. As an example we give the results of calculations by the algorithm described above 
for residual displacements and structural stresses in a glass-plastic shell prepared by 
forming with uniform pressure p2 + on the mandrel. The surface of the mandrel has the shape 

of a paraboloid of rotation with an equation of the meridian r = Va~ (r 0 ~ r s rl) (z is 
coordinate along the mandrel axis). The shell is composed of six pairs (n = 3) of uniform 
unidirectionally reinforced layers. Reinforcement angles in pairs: ~i -= 60~ 42 = 30~ 
~ = 0. The thickness of the elementary layers in the pairs h I = h 2 = 10 -4 m, h 3 = 0.5.10 -4 
m. Reinforcement and binder in a unidirectional layer have the characteristic : E' = 
9.104 MPa, E" = 4.10 ~ MPa, v' = 0.2, v" = 0.35, ~' = 5-10 -6 deg -~, ~" = 5.10 -5 deg -I, c' = 
2-103 MPa, G" = 40 MPa (o' and o" are limits of ductility (strength for brittle materials) 
of the reinforcement and binder). Lay-up of the layers is carried out with tl = 20~ without 
prior tension of the reinforcement (a0 m = 0, m = I, 2, 3) After polymerization of the 
binder at t 2 = 170~ the shell is cooled to t s = 20~ and it is removed from the mandrel. 
During the whole manufacturing process edges of the shell r = r0, r = r I are free from external 

load: Ts(k)(r 0) = Ts(k) (r I) = 0. 

In order to estimate the level of residual structural stresses we introduce functions 
! t I 

k m  = ( ~ 1 ( 5 ) / ~  ) m  (m = i ,  2, 3), 

" Fl " ~2 " " " 2 " 2 

Presented in Fig. I are the results of calculating residual displacements u s (broken 
curves) and w 5 (solid curves) for a shell with parameters a = 4.5 m, r 0 = 0.25 m, r I = 
1.5 m. Here and below lines I and 2 relate to values of shrinkage strains for the binder 
e 0 = 0 and-0.005. Given in Figs. 2 and 3 are km'(r) , km"(r) curves where solid, broken, 
and broken-dotted curves correspond to values m = i, 2, 3. It can be seen from Fig. 3 that 
the level of shrinkage residual stresses in the binder is quite high and with g0 =-0.005 
for layers with reinforcement angles ~ = 0, 30, 60 ~ it is 70, 86, and 88% of the critical 
value. For the minimum permissible value of formation pressure from (2.8) we find p,+ = 
7.3.10 -s MPa. Whence it follows in particular that in the process in question it is possible 
to use vacuum forming. Curves in Figs. 1-3 corresponding to functions (curves 3) with 
t 2 = 200~ e 0 =-0.005 illustrate the effect of polymerization temperature on residual 
displacements and stresses. 

Given in Fig. 4 as a second example are the results of calculating residual deflection 
w 5 of the central surface (line 3) of a round cylindrical shell prepared by the wet winding 
method for glass tape K-II5/100 on a steel mandrel in relation to force of tension N. The 
inner radius of the cylinder rl = 0.03 m, the outer radius r 2 = 0.038 m, polymerization temp- 
erature t 2 = 70~ initial and final temperature of the manufacturing process t I = t s = 
20~ and the rest of the data for the calculation are taken from [9]. Given for comparison 
in Fig. 4 are values of residual deflections w(rl), w(r2), for the inner and outer surface 
of the cylinder (lines i and 4) calculated assuming smallness of stiffness of the semifinished 
product compared with the stiffness of the mandrel by the procedure in [9] where residual 
stresses and displacements in a round cylinder are found from solving the plane thermoelas- 
tieity problem. In calculating w(r 2) it is assumed that in the heating stage for the semi- 
finished product together with the mandrel deflection of its outer surface is mainly due 

II II f f  

O,S . ~ . . . . . . ~ ' ~ " " ~  - 
o , s ~  o 

o,,I T Z - j  L.-"  ' - -  -, -io 
-20 

0,25 0,5 40 r, .m 

~o, 10 -6' m 

I I 
0 f~ 20 N, 

Fig. 3 Fig. 4 
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to the amount of circumferential deformation for thermal expansion of the semifinished product. 
The correctness of this assumption follows from analyzing the solution in [9] if the consid- 
erable anisotropy of semifinished product material properties is considered. Extreme values 
of residual deflections of the inner surface obtained by experiment in [9] are shown by 
circles in Fig. 4. Straight line 2 relates to values of residual deflections for the central 
surface of the cylinder which is expressed in terms of residual deflection of front surfaces 
by the equation w, = 0.5 (w(r I) + w(r2)). 
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DISLOCATIONS AND DISCLINATIONS IN NONLINEAR ELASTIC BODIES 

WITH MOMENT STRESSES 

L. M. Zubov and M. I. Karyakin UDC 539.3 

A theory of dislocations and disclinations in elastic media which exhibit moment stresses 
and experience considerable strains is constructed. The marked effect of Volterra type 
dislocations in a Kosser nonlinearly elastic continuum is demonstrated by solving the problem 
of determining displacement and rotation fields in a multiconnected region with prescribed 
fields for the strain tensor and the bending strain tensor. Expression of Volterradislo- 
cation characteristics in terms of the strain tensor field is given by means of a multiplica- 
tive contour integral. As a special case consideration is given to plane strain with which 
it is possible to delineate dislocations and disclinations in terms of normal contour inte- 
grals. Within the limits of moment nonlinear elasticity theory accurate solutions are found 
for the problem of screw dislocations and wedge dislocations. The effect of considering 
moment stresses and nonlinearity on the behavior of solutions close to the axis of a defect 
is analyzed. 

I. In a model of a Kosser continuum [1-4] each particle of a solid has the degrees 
of freedom of an absolutely solid body. The position of particles in a deformed configura- 
tion is determined by radius-vector R and by strictly orthogonal tensor H called below 
the microrotation tensor. By using the principle of material indifference [5] it is pos- 
sible to show that specific (per unit volume of reference configuration) potential energy 
W of an elastic Kosser continuum will depend on deformation of the body by means of two 

~econd rank tensors: tensor U = (V~ T , called in the future the first measure of strain, 
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